Slide 1
Experience with a Clinical Data Repository and Warehouse
Adam Wilcox, PhD
Columbia University
March 24, 2009

Slide 2
Outline
History
Clinical Data Repository
Clinical Data Warehouse

Slide 3
Clinical Information Systems
Stage 1: Early computers calculated data in context
Stage 2: Client applications provided access to ancillary data
Stage 3: Systems began aggregating data from multiple sources
Stage 4: Data storage provided historical view and analysis
Stage 5: Workflow applications formalize processes between clinical roles

Slide 4
Clinical Information System Technology Levels
Level 1: Departmental applications
Level 2: Internally-developed integrated systems
Level 3: Functional vendor-based systems
Level 4: Comprehensive clinical information systems

Slide 5
Clinical Information Systems at Columbia University
Began at Stage 3
Pushing a Level 1 system to Level 2
Issues
Vocabulary
Data modeling
Interfaces
Decision support
Data processing
Recipient of first Nicholas Davies Award

Slide 6
Image: Clinical Information Systems Architecture.

Slide 7
Image: EMR environment
Slide 8
Image: Architecture. Handling, Encoding, Routing, Monitoring, Access

Slide 9
Other Level 2 Systems
Intermountain
VA
Partners
Regenstrief
Vanderbilt

Slide 10
Level 3 Systems
Cerner
Epic
Eclipsys
GE
McKesson

Slide 11
Challenges at Columbia
Moved from Stage 3 through Stage 4 to Stage 5
Purchased a vendor system (Level 3)
How to get to Stage 5 and Level 4?

Slide 12
Challenges at CPMC/CUMC/NYPH/WCMC
In 1998, merged two academic medical centers into NewYork Presbyterian Hospital
Columbia Presbyterian campus became Columbia University Medical Center
New York Hospital became Weill Cornell Medical Center
Currently 4 different electronic health records
Eclipsys (WCMC)
Eclipsys (CUMC)
Epic (WCMC)
Allscripts (CUMC)

Slide 13
Image: NYP Computing, Environment Sep 2007

Slide 14
Image: Integrating Among Multiple EHRs
Eclipsys (CUMC)
Eclipsys (WCMC)
Allscripts
Epic
Slide 15
Problems with Integrating to Application Databases
Must model each system multiple times
Increased effort and complexity
Overloading workflow databases
Protecting external data consistency (no updates)
Increased complexity of data protection
Bringing in data for a new patient
When to pull data in
Interfaces don’t naturally pull in historical data
Increased complexity as move toward RHIOs

Slide 16
Image: Repository Model
Eclipsys (CUMC)
Eclipsys (WCMC)
Clinical Data Repository
Allscripts
Epic

Slide 17
Benefits of CDR
Only model data from source systems once
Common data store
Data are read only
Optimized for read
Historical data included
Web-based viewer adaptable to multiple applications
Adaptable to future health information exchange efforts
Platform of innovation

Slide 18
Optimized for Retrieval
Relational structure can be difficult to query for both data and context
Gathering multiple elements requires multiple table joins
Good for data storage
Good for aggregating across multiple patients
Event-based model good for querying across data types
Data organized according to patient
Not good for querying across patients

Slide 19
Retrieval optimization
Paradigm shift in how data are used
Paper records mainly for primary use
Electronic allows secondary use
Secondary use can be multiple times

Slide 20
Image: CDR View in Eclipsys

Slide 21
Graph: Proportion of CDR Viewer Access

Slide 22
Graph: Increase in CDR View Access

Slide 23
CUMC/NYP Clinical Data Warehouse History
1994: Created, sponsored by Columbia University Department of Medical Informatics and Office of Clinical Trials
Populated with data from existing clinical data repository
Supporting clinical research
1998: Columbia + Cornell = NewYork Presbyterian Hospital
Warehouse funded by NYPH
Goal to incorporate and provide data across whole system
2004: Formal analysis of CDW user needs by Clinical Quality and Information Technology Committee (CQIT)

Creation of Data Warehousing Subgroup
Need to bring together disparate clinical data sources
Need to manage user requests for data

Slide 24
Uses of the Warehouse
Clinical research queries
Management reports
Clinical trial recruitment

Slide 25
CDW Content Issues
Began as a copy of the repository
Data already gathered
Mainly for research queries
Some data marts built for common queries
Ability to query rapidly across patients increases security risk

Slide 26
Screen Grab

Slide 27
Screen Grab
Slide 28
Goal of Access Policy
Provide broader access to data
Central control is resource limited
Allow collection of more data sources
Reassure data stewards
Three separate institutions
Data ownership not completely defined for all data

Slide 29
CDW Structure
Identifying data
Patient identifying information
Main data
Event tables for clinical repository
Lookup tables
Vocabulary translation
Contains no patient data
Specialty data marts

Slide 30
Access Policy
Identifying data
Most restricted
Create a research identifier to replace the patient ID
Allow access to only ResearchID, sex, birth date (month and year only), marital status, race, death status
Specialty data
Access policy defined by data steward
Patient clinical data
No access to text data
Modified dates
Lookup tables
Full access (contain no patient data)

Slide 31
Access Policy
Specific patient information
Sometimes needed to create initial queries
Analysts get access only to a randomly selected subset
Access request through supervisor
De-identified patient data
Test patients
Full access given
Slide 32

CUMC/NYP Clinical Data Warehouse History

1994: Created, sponsored by Columbia University Department of Medical Informatics and Office of Clinical Trials
Populated with data from existing clinical data repository
Supporting clinical research
1998: Columbia + Cornell = NewYork Presbyterian Hospital
Warehouse funded by NYPH
Goal to incorporate and provide data across whole system
2004: Formal analysis of CDW user needs by Clinical Quality and Information Technology Committee (CQIT)
Creation of Data Warehousing Subgroup
Need to bring together disparate clinical data sources
Need to manage user requests for data

Slide 33

Analysis of Challenges

Data in vendor-based transactional systems
Could not query across transactional systems
Users needed help in defining their needs
Mature initiatives required more robust data solutions

Slide 34

Graph: Pneumonia Core Measures

Slide 35

Graph: Pneumonia Core Measures

Slide 36

Image: VIRTUAL CLINICAL DATA WAREHOUSE

Slide 37

Graph

Slide 38

Image: VIRTUAL DATA WAREHOUSE

Slide 39

Conclusion

Integrating clinical data repository view into workflow applications can improve use
Access policies need to isolate data to reassure data use from different stakeholders
Data access tools need to account for users’ evolving data needs along the quality improvement life cycle